Since my Python Apps do not work on any Android Version greater than 6, I am working on re-writing them in Android Studio. At first I was not particularly thrilled that I had to re-write everything but now I’m starting to really like Android Studio. I’ve decided to add additional functionality so that I only need one App. The name of the bluetooth device (the locomotive name) will now allow the app to ‘configure itself’ when the locomotive is chosen on the phone. If the locomotive uses a TSU-4400 SoundTraxx decoder, the appropriate screens will come up for that. I am also going to allow the main screen to be programmed, change the icons and what function codes are associated with them.

Adding the Bluetooth Controller to my Chessie U25B. Bluetooth board, Soundtraxx TSU-4400 and DCC Amplifier. 2.2 inch tangbang speaker with passive radiator. Servos on the couplers. There is a 2200mAh lipo in the fuel tank.

I already had this locomotive hooked up for the most part, I was driving it with my Xbee Board so I swapped that out with the Bluetooth version. I also replaced a tiny speaker I had in the front with the one in the picture (on the left). Much Much cleaner sound mix. Bells and horns out of the front and the prime mover going to the back speaker with the passive radiator.

Here it is out on the layout, ready for a test run.

Here is a video of some basic testing. It still needs some tweaking on momentum and motor voltages. Please forgive the poor video and sound quality- my nice camera died and this is my backup.

I also ran my latest version of the Generic DCC Phone app. Works quite well now. The QSI is a tad on the finicky side however so I made a very small mod to the firmware in the Bluetooth Widget. Once I back test that on the other decoders I’ll roll it into the firmware release.

You can find all of my Android Train Control Apps on Google Play.

Something different, a gadget for the airplane. This is my incarnation of the Stratux open source ADS-B unit. It uses a Raspberry Pi3 along with a couple of high gain antennas, two radio receivers and a GPS unit to snatch weather and traffic data out of the air. For free! Can’t beat that. I think I spent a little over $100 on it, but I already had the Raspberry Pi3.

I also have an AHRS module plugged into it which should give me a basic Synthetic Vision system. Now I just have to figure out how to mount it ‘semi-permanent’ into the airplane. It has to be removable and used for ‘situational awareness only’ to be legal.

But one thing at a time. I’ve tried it with my two BLU phones and also my ASUS 7 inch tablet. So far so good. Works really well. Just plugged all the parts together, flashed the SD card with the free software and it comes up and runs. I’m trying out a couple of Android Apps that will work with it- they overlay the weather and traffic data on a current FAA sectional moving map plus let you do other cool stuff like plot out your file plan, get airport info and such. Neat.

Got all the parts and pieces together (well almost) and did some testing outside on the layout. I was very impressed with the range, I have a new $50 BLU Studio phone and I’m getting a good 100ft. So far I have not seen any of the problems mentioned by other users of the TCS Wow 5amp. I did talk to tech support at TCS and they indicated that there had been some hardware changes to the 5amp since it was first released. He didn’t go into what they were and was not clear if the firmware changed or not. Mine is pretty new, I got it from RP about a month ago. He said there was no way to read the s/w version so I don’t know exactly what rev of firmware is in there. That is obviously on purpose for whatever reason.

But so far, I really like this decoder. Crisp sounds and I like the brake feature. Very cool that it ‘coasts’ when you shut down the throttle.

First Power up of the TCS decoder and the Bluetooth Enabled Control Widget

This is the first power on test of the decoder. I have not changed anything in the firmware or Android App from what I had with the Economi Decoder. I am using the 28/128 speed step which is the default in both decoders – so the extended packet format of DCC. The throttle, Bell and Horn all work out of the box, no configuration was done to the decoder before I tried this.

Because the TCS has some additional features and requirements, I will probably have to change the firmware and app side a little from the Economi implementation. It also has some sort of ‘mode’ to switch between the lights and sound functions so I will have to figure that out. That is the nice thing about a custom app, I can tailor it to each decoder.

I also will be controlling a few extra things with this particular installation – I’ve got a temperature sensor mounted on the heatsink of the DCC amp. I also had a current sensor in there but it proved to be defective so I had to remove it for now. I’ve got two fans wired to function outputs on the decoder so I can turn those on and off. Two servos will be used to control the couplers as well. These will be implemented in the widget layer, they won’t be controlled by DCC so I can tailor that profile as well. Just yanking the couplers open doesn’t work very well, you need a smooth motion.

One other option will require a PCB mod. I want to be able to ‘name’ each BT module so it shows up in the phone as a locomotive number and description. The docs say I can use up to 20 characters for this. However it requires that you power up the device with a pin held low, then let it go high so it enters ‘AT’ mode. This will require either a special app or an extension to the one I have to set this plus a jumper on the PCB. I can work around this for now but I will add it to the PCB layout along with a couple of other spacing fixes for the next pass.

Overview

Temperature Sensor

Front Speaker and LEDs

Fan 1

Servo and Coupler

Wheel Counter and Main Speaker

Before

After

This was the biggest job I have ever done to an airplane. I did a bunch of plastic work on my last one (a Cessna 152) and even put in a new set of skylights once but this took the prize. Four days of 8hr work (that I am still paying for. ouch) but I think the results are well worth it.

I think I’ve finally gotten to a beta release point on my Phone App and Widget Firmware. The firmware is universal but the phone app is customized for the Soundtraxx Economi DCC decoder. This app lets you control and program a battery powered locomotive via wireless DCC on your Android phone.. Above are the four screens. Some of the controls, the couplers in particular, are not implemented quite yet, or are implemented but untested. Everything else works. The coupler buttons are intended to control servos to actuate the couplers ala switching moves.

Below is a (rather long) video of the app driving the decoder on my little test setup. The blue readout is a current meter. Not pulling much here.

I have a new locomotive, a USAT GP9, that I will be putting a TCS WOW decoder into. That will get it’s own phone app, although it should look very similar to this one. I’m finding the various decoders, while all adhering to the DCC spec, are a little different in certain areas, particularly the CV programming. Also, one thing I didn’t consider is getting data FROM the decoder. I have the circuit and s/w design for that but it’s not implemented yet. That’s next.

At some point I may try to merge the various incarnations of the phone app into one, but for now I’ll be doing one for each. I plan to support the three decoders I currently have, the QSI, the Economi and the TCS Wow.

Here is a demo of the phone app. It doesn’t actually do anything, just lets you change screens and move the throttle slider etc. But I’d be interested in feedback from other train folks – Drop me an email: martan@cstone.net

Below is a diagram of how it all fits together